Regenerating the Future, Again

Peter Goodfellow
President
Institute of Advanced Biological Analytics
The Future Is Here

UniQure
 EMEA approval of Glybera

Spark Therapeutics
 FDA Advisory Board recommends approval of Luxturna

Novartis
 CAR-T, FDA approval of Kymriah
Institute of Advanced Biologic Analytics

• Rooted in the interface between Genetics, Genomics and Computational Science

• Applying advances in AI, cloud computing and novel chip design for accelerated analytics
"Il n'y a de nouveau que ce qui est oublié”

Marie Antoinette to her dressmaker Rose Bertin
Institute of Advanced Biologic Analytics

Mission Statement:

"There is nothing new - except opportunity"
Current Focus of iABA

• The ‘3Rs’ for therapeutic application
 • Replace
 • Repair
 • Regenerate
Replace

• Non-biological
 • Artificial joints – over 7 million Americans have artificial joints
 • Artificial kidneys – over 400,000 Americans depend on dialysis
 • Pacemakers – 600,000 implanted each year worldwide
 • Artificial pancreas -
Medtronics Minimed – Wearable Artificial Pancreas
Replace

• Non-biological
 • Artificial joints – over 7 million Americans have artificial joints
 • Artificial kidneys – over 400,000 Americans
 • Pacemakers – 600,000 implanted each year world wide
 • Artificial pancreas

• The future
 • Further miniaturisation
 • Application of AI techniques
 • Remote supervision
Replace

• Biological
 • Syngeneic and allogeneic: blood transfusions (>100 million), kidney (84,000), liver (27,000), bone marrow (20,000), heart (7,300), lung (5,200), pancreas (2400), small bowel, face, hand etc
 • Xenogeneic

• The future
 • Modulation of the immune system better facilitating allogeneic and xenogeneic transplants – learnings from immuno-oncology
 • Humanisation of xenogeneic donors (especially using genome editing)
 • Mixed biological and non-biological devices
Gensight – a Combination of Device and Gene Therapy

OPTOELECTRONIC STIMULATION DEVICE

1. **Image light**
2. **Image captured by camera**
3. **Image processed**
4. **LED light amplified image to DMD**
5. **DMD reflects LED light-amplified image**
6. **Retinal cells expressing light-sensitive proteins and transmitting signal to visual cortex**
Repair

• A problem of stem cells
Project 1: The Human Yeast

• Define essential genes – approximately 1100

• Check essential genes for human homologues – majority are shared

• Create computational model of yeast based on gene-gene, protein-protein and protein-gene data etc.

• Replace yeast gene with human gene and select for fast growing variants

• Use analytics to predict likely genes affected

• Sequence the whole genome

• Refine model

• Repeat
Other Yeast Computational Models
Project 2: The Human Cell Lineage
The Human Cell Atlas

MISSION
To create comprehensive reference maps of all human cells—the fundamental units of life—as a basis for both understanding human health and diagnosing, monitoring, and treating disease.

ABOUT HUMAN CELL ATLAS
In London on 13 and 14 October 2016, a collaborative community of world-leading scientists met and discussed how to build a Human Cell Atlas—a collection of maps that will describe and define the cellular basis of health and disease.
The Lineage Tracing by CRISPR/CAS
Project 2: The Human Cell Lineage

• CRISPR based (or cre-lox) barcode lineage tracing in mouse

• Single cell transcriptomics to define cell types in developing and adult mouse

• Single cell transcriptomics in human tissues to translate the mouse data to human

• Confirm in human using random (naturally occurring) mutations in human cell lineage tracing
Project 3: Sourcing cells

Cell

Volume 126, Issue 4, 25 August 2006, Pages 663–676

Article

Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors

Kazutoshi Takahashi¹, Shinya Yamanaka¹, ²

https://doi.org/10.1016/j.cell.2006.07.024
Transdifferentiation

• Almost any cell to iPSC: Oct3/4, Sox2, c-Myc, and Klf4 (Nanog, Lin28)

• Fibroblast to neuron: Ascl1, Brn2 and Myt1l

• Fibroblast to cardiomyocyte: Gata4, Mef2c and Tbx5
The Barriers to Replacement

• Introduction of cells – the niche problem

• Epigenetics
Regeneration

• Organ regeneration is a problem of co-ordination of multiple stem cells

• Organoids
The Blade Runner Paradox
Thanks to my colleagues at iABA