

Regenerating the Future, Again

Peter Goodfellow

President

Institute of Advanced Biological Analytics

The Future Is Here

UniQure EMEA approval of Glybera

Spark Therapeutics FDA Advisory Board recommends approval of Luxturna

Novartis CAR-T, FDA approval of Kymriah

Institute of Advanced Biologic Analytics

- Rooted in the interface between Genetics, Genomics and Computational Science
- Applying advances in AI, cloud computing and novel chip design for accelerated analytics

Institute of Advanced Biologic Analytics

"Il n'y a de nouveau que ce qui est oublié"

Marie Antoinette to her dressmaker Rose Bertin

Institute of Advanced Biologic Analytics

Mission Statement:

"There is nothing new - except opportunity"

Current Focus of iABA

- The '3Rs' for therapeutic application
 - Replace
 - Repair
 - Regenerate

Replace

- Non-biological
 - Artificial joints over 7 million Americans have artificial joints
 - Artificial kidneys over 400,000 Americans depend on dialysis
 - Pacemakers 600,000 implanted each year world wide
 - Artificial pancreas -

Medtronics Minimed – Wearable Artificial Pancreas

Replace

- Non-biological
 - Artificial joints over 7 million Americans have artificial joints
 - Artificial kidneys over 400,000 Americans
 - Pacemakers 600,000 implanted each year world wide
 - Artificial pancreas
- The future
 - Further miniaturisation
 - Application of AI techniques
 - Remote supervision

iABA

Replace

- Biological
 - Syngeneic and allogeneic: blood transfusions (>100 million), kidney (84,000), liver (27,000), bone marrow (20,000), heart (7,300), lung (5,200), pancreas (2400), small bowel, face, hand etc
 - Xenogeneic
- The future
 - Modulation of the immune system better facilitating allogeneic and xenogeneic transplants – learnings from immuno-oncology
 - Humanisation of xenogeneic donors (especially using genome editing)
 - Mixed biological and non-biological devices

Gensight – a Combination of Device and Gene Therapy

Repair

• A problem of stem cells

Project 1: The Human Yeast

- Define essential genes approximately 1100
- Check essential genes for human homologues majority are shared
- Create computational model of yeast based on gene-gene, protein-protein and protein-gene data etc.
- Replace yeast gene with human gene and select for fast growing variants
- Use analytics to predict likely genes affected
- Sequence the whole genome
- Refine model
- Repeat

Other Yeast Computational Models

PLOS •	NE RY	Publish Abo	ut Browse
GOPEN ACCESS 🖻 PEER-REVIEW	ED		
RESEARCH ARTICLE			
Computationa for Winemakir	l Models for Prediction ng from Phenotypic Pro	n of Yeast Stra ofiles	in Potential
Inês Mendes . Ricardo Fra	nco-Duarte 🔤, Lan Umek, Elza Fonseca, João	o Drumonde-Neves, Sylvie D	equin, Blaz Zupan,
Dont Schuller	the://doi.org/10.1271/journal.none.0066522		
Published. July 10, 2013 • 11			
Article	uthors Metrics	Comments	Related Content
*			
Abstract			
Introduction	Abstract		
Results			
Discussion	Saccharomyces cerevisate strains from diverse natural nationals naroour a vast amount of phenotypic diversity, driven by interactions between yeast and the respective environment. In grape juice fermentations, strains are exposed to a wide array of biotic and abiotic stressors, which may lead to strain selection and generate naturally arising strain diversity. Certain phenotypes are of particular interest for the winemaking industry and could be identified by screening of large number of different strains. The objective of the present work was to use data mining approaches to identify those phenotypic tests that are most useful to predict a strain's potential for winemaking. We have constituted a <i>S. cerevisiae</i> collection comprising 172		
Materials and Methods			
Supporting Information			
Acknowledgments			
Author Contributions			
References	strains of worldwide geographical origins screened by considering 30 physiological	or technological applications I traits that are important from	. Their phenotype was an oenological point of
Reader Comments (0)	view. Growth in the presence of potassiur were mostly contributing to strain variabil	m bisulphite, growth at 40°C, ity, as shown by the principal	and resistance to ethanol component analysis. In
Media Coverage (0)	the hierarchical clustering of phenotypic profiles the strains isolated from the same wines and		
Figures	vineyards were scattered throughout all c tended to co-cluster. Mann-Whitney test results and strain's technological applicat the 30 phenotypic tests of growth in iprod potassium bisulphite (150 mg/mL) that pr to the group of commercial strains. The p 27% using the entire phenotypic profile a tests were considered. Results show the strain selection procedures.	Justers, whereas commercial revealed significant associati tion or origin. Naïve Bayesian tion (0.05 mg/mL), cyclohexir ovided most information for t vrobability of a strain to be as nd increased to 95%, when o usefulness of computational	winemaking strains ins between phenotypic classifier identified 3 of nide (0.1 μ g/mL) and ne assignment of a strain signed to this group was nly results from the three approaches to simplify

Project 2: The Human Cell Lineage

The Human Cell Atlas

Home HCA Areas of Impact News Publications Data Coordination Join HCA Contact

MISSION

To create comprehensive reference maps of all human cells—the fundamental units of life—as a basis for both understanding human health and diagnosing, monitoring, and treating disease.

V

ABOUT HUMAN CELL ATLAS

In London on 13 and 14 October, 2016, a collaborative community of world-leading scientists met and discussed how to build a Human Cell Atlas—a collection of maps that will describe and define the cellular basis of health and disease.

The Lineage Tracing by CRISPR/CAS

Structured Abstract

INTRODUCTION

The developmental path by which a fertilized egg gives rise to the cells of a multicellular organism is termed the cell lineage. In 1983, John Sulston and colleagues documented the invariant cell lineage of the roundworm *Caenorhabditis elegans* as determined by visual observation. However, tracing cell lineage in nearly all other multicellular organisms is vastly more challenging. Contemporary methods rely on genetic markers or somatic mutations, but these approaches have limitations that preclude their application at the level of a whole, complex organism.

Project 2: The Human Cell Lineage

- CRISPR based (or cre-lox) barcode lineage tracing in mouse
- Single cell transcriptomics to define cell types in developing and adult mouse
- Single cell transcriptomics in human tissues to translate the mouse data to human
- Confirm in human using random (naturally occurring) mutations in human cell lineage tracing

Project 3: Sourcing cells

Cell

Volume 126, Issue 4, 25 August 2006, Pages 663-676

Article

Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors

Kazutoshi Takahashi¹, Shinya Yamanaka^{1, 2,} **Å**, **M**

https://doi.org/10.1016/j.cell.2006.07.024

Get rights and content

Transdifferentiation

- Almost any cell to iPSC: Oct3/4, Sox2, c-Myc, and Klf4 (Nanog, Lin28)
- Fibroblast to neuron: Ascl1, Brn2 and Myt1l
- Fibrobast to cardiomyocyte: Gata4, Mef2c and Tbx5

The Barriers to Replacement

- Introduction of cells the niche problem
- Epigenetics

Regeneration

- Organ regeneration is a problem of co-ordination of multiple stem cells
- Organoids

The Blade Runner Paradox

Thanks to my colleagues at iABA

iABA