

Bridging efficacy to effectiveness: The IMI GetReal project

Meta-analyses, outcome prediction, evidence synthesis and modelling

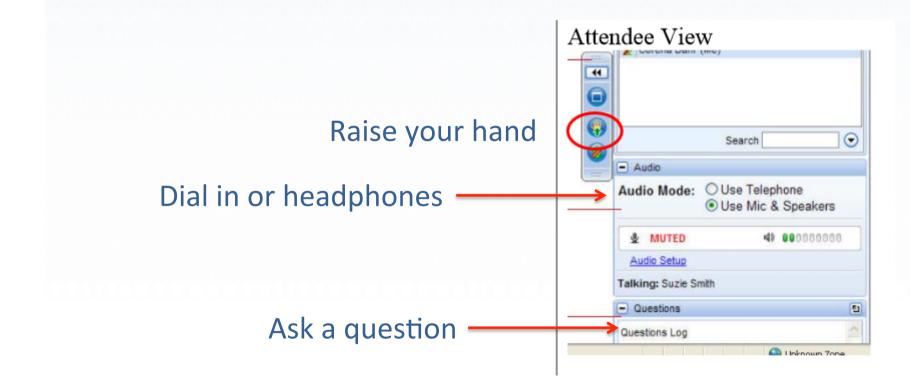
WP4 Webinar 10 May 2016

⁺Real-Life Data in **Drug Development**

Matthias Egger, Director of the Institute of Social and Preventive Medicine (ISPM), University of Berne, Switzerland

Christine Fletcher Executive Director Biostatistics, Amgen Ltd

Eva-Maria Didden, Postdoctoral research fellow at the ISPM, University of Berne, Switzerland


Georgia Salanti Associate Professor, University of Ioannina School of Medicine

How to Use the Webinar Tools

Save the date!

- **CONFERENCE: 17 June 2016 London:** GetReal Putting Real World Healthcare Data to Work (Upon invitation only)
- www.imi-getreal.eu or vitaltransformation.com

An introduction to WP4 and Get Real

Matthias Egger

Director of the Institute of Social and Preventive Medicine (ISPM), University of Berne, Switzerland

Architecture of GetReal

Develop a common understanding amongst healthcare decision makers and pharmaceutical R&D of the acceptability and usefulness of Real World Evidence (RWE) to estimate the relative effectiveness (RE) of new medicines

Study the drivers of the efficacy-effectiveness gap and novel study designs informing RE at launch Assess operational aspects of conducting pragmatic RE research early in the development process

Develop evidence synthesis and modelling approaches to bridge the efficacy-effectiveness gap

Project management, Governance, Dissemination

Key questions in evidence synthesis and modelling

- How well can relative effectiveness be estimated from phase II and III RCT efficacy studies alone?
- How should RCTs, additional relative effectiveness studies and observational data best be integrated to address specific decision making needs of regulatory and HTA bodies at launch?
- How can relative effectiveness be predicted from available efficacy and observational data?

Egger, Fletcher, Moons. JRSM 2016

Key questions

Qu	estions	Outcomes	Applicability	Data sources	Evidence synthesis	Conditions	
1)	How efficacious and safe is this drug?	Efficacy, safety	Typical patients included in clinical trials	Phase II/III randomised clinical trials	Clinical trials, standard meta- analysis	Study conditions	
2)	How efficacious and safe is this drug compared to alternative therapies?	Relative efficacy, relative safety	Typical patients included in clinical trials	Phase II/III randomised clinical trials	Network meta- analysis	Study conditions	
3)	How effective and safe is this drug compared to alternative therapies, in the patients who will likely receive it post- launch?	Relative effectiveness, relative safety in predicted study populations	Patients predicted to receive the drug post-launch	Phase II/III randomised clinical trials, clinical databases and registries	Individual patient data (IPD) network meta-analysis and meta-regression	Study conditions	
4)	How effective and safe is this drug compared to alternative therapies, in the patients who will likely receive it in the real world of a health care system?	Relative effectiveness, relative safety in predicted real world populations	Patients predicted to receive the drug post-launch in a given health care system	Phase II/III randomised clinical trials, clinical databases and registries, expert opinion, patient preferences	Mathematical modelling	Real world conditions	

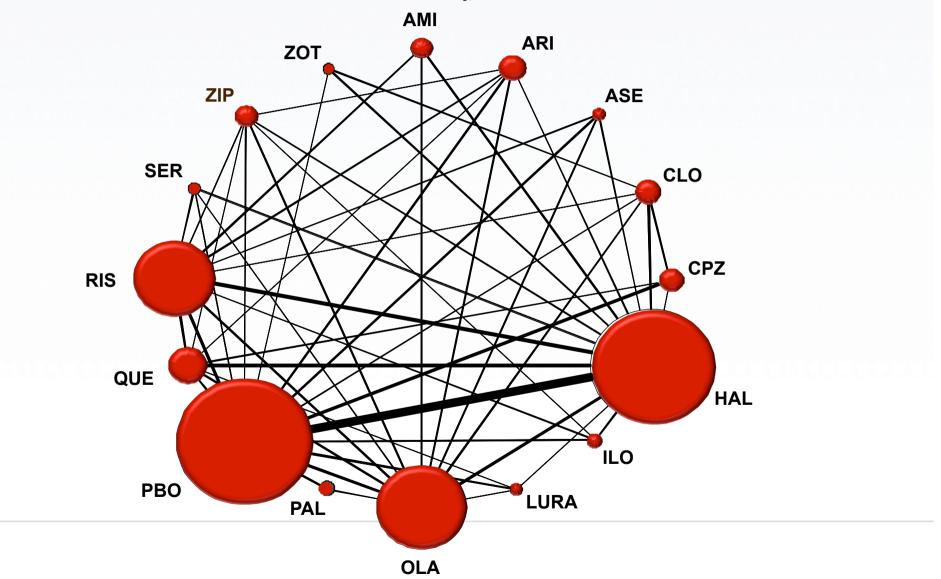
Estimating and appraising treatment effects using randomized and real-world evidence A case study on schizophrenia

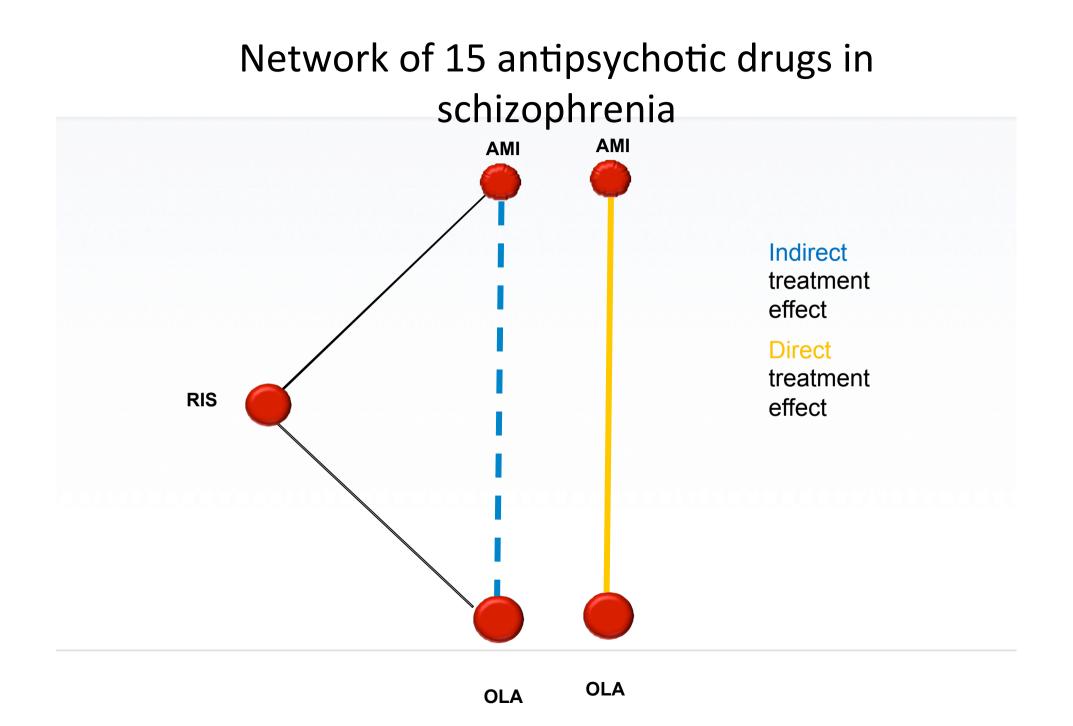
Georgia Salanti School of Medicine, University of Ioannina, Greece

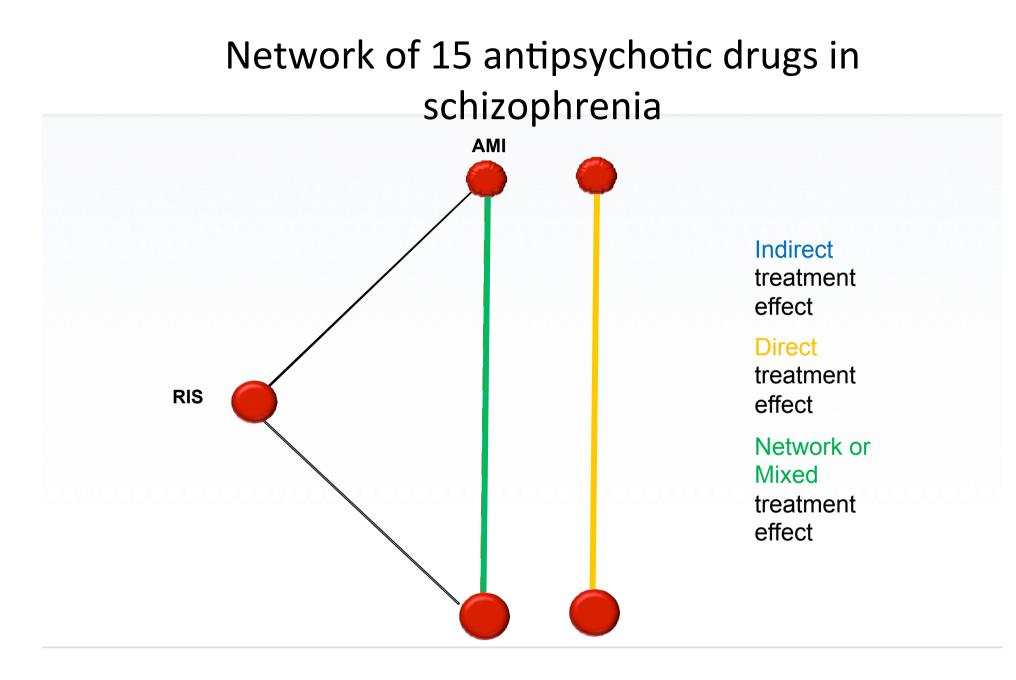
Case study

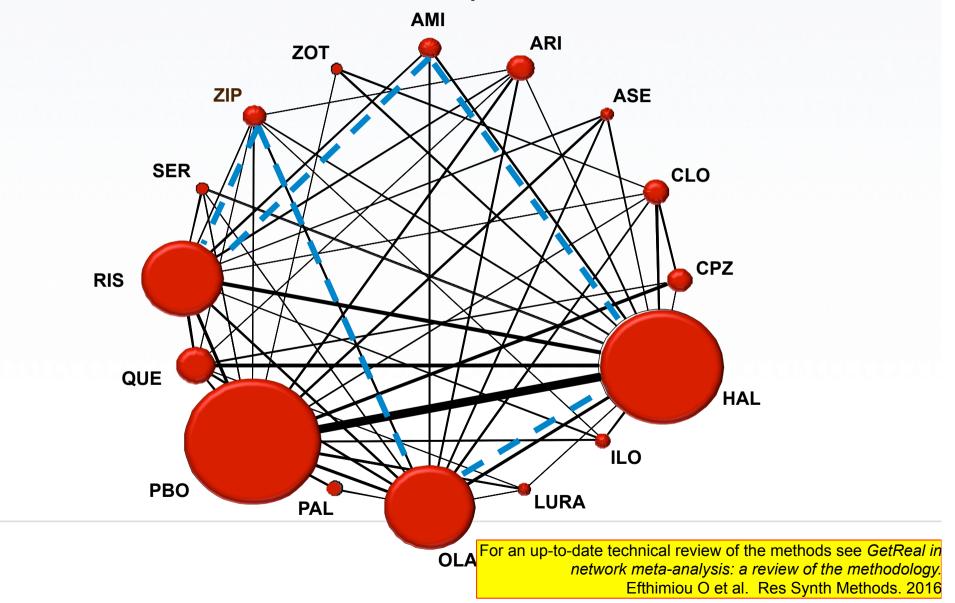
Comparing 15 antipsychotics in schizophrenia

Aripiprazole, Amisulpride, Asenapine, Chlorpromazine, Clozapine, Flupentixol, Iloperidone, Lurasidone, Quetiapine, Olanzapine, Paliperidone, Risperidone, Sertindole, Ziprasidone, Zotepine


RCTs (Randomized Controlled Trials): 168 trials with study-level data (active and placebo)


RWE (Real World Evidence): A large cohort study (SOHO) with 11.000 patients (*Patient-level data*)


Comparative efficacy and tolerability of 15 antipsychotic drugs in schizophrenia: a multiple-treatments meta-analysis. Leucht S et al. Lancet. 2013

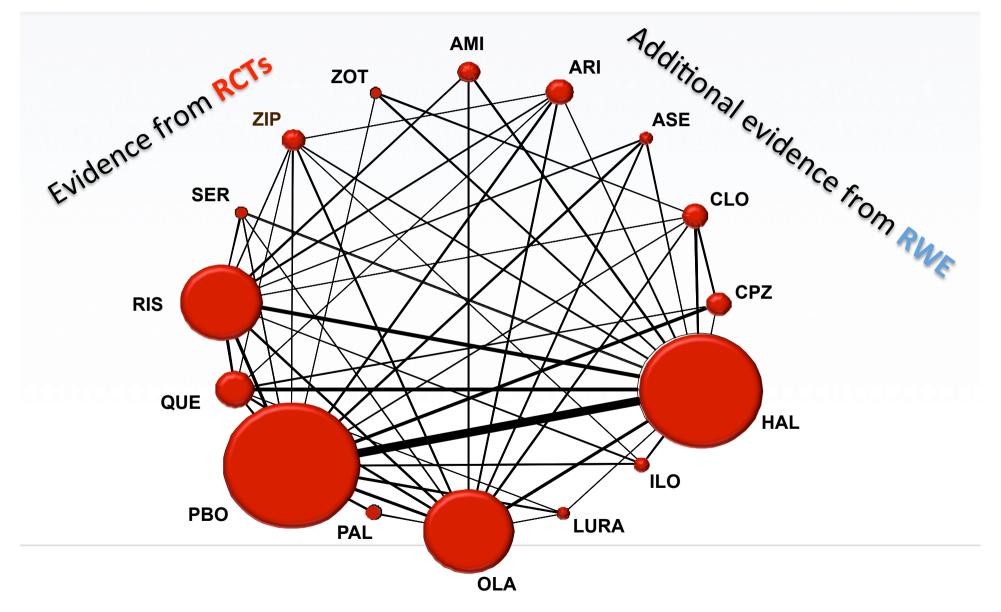

Network of 15 antipsychotic drugs in schizaphrenia

Network of 15 antipsychotic drugs in schizophrenia

Efficacy and acceptability of 15 antipsychotic drugs in schizophrenia

CLO	1·10 (0·69 to 1·69)	1.00 (0.68 to 1.43)	0.87 (0.59 to 1.22)	0·97 (0·63 to 1·42)	0·70 (0·39 to 1·16)	<u>0.57</u> (0.40 to 0.82)	0.76 (0.50 to 1.10)	0·76 (0·51 to 1·09)	<u>0.60</u> (0.38 to 0.89)	<u>0.65</u> (0.43 to 0.95)	0·71 (0·48 to 1·01)	0.68 (0.43 to 1.01)	<u>0.61</u> (0.39 to 0.90)	<u>0.67</u> (0.45 to 0.99)	<u>0.46</u> (0.32 to 0.65)
<u>-0.22</u> (-0.41 to <u>-0.04)</u>	АМІ	0·93 (0·69 to 1·22)	0.81 (0.60 to 1.08)	0·90 (0·62 to 1·24)	0.66 (0.37 to 1.10)	<u>0.53</u> (0.40 to 0.70)	<u>0.70</u> (0.51 to 0.95)	<u>0.71</u> (0.51 to 0.96)	<u>0.56</u> (0.38 to 0.78)	<u>0.60</u> (0.43 to 0.83)	<u>0.67</u> (0.44 to 0.95)	<u>0.63</u> (0.43 to 0.89)	<u>0.56</u> (0.39 to 0.79)	<u>0.63</u> (0.44 to 0.87)	<u>0·43</u> (0·32 to 0·57)
-0·29 (-0·44 to -0·14)	-0·07 (-0·19 to 0·05)	OLA	0·87 (0·76 to 1·01)	0·97 (0·78 to 1·20)	0·71 (0·43 to 1·13)	<u>0.58</u> (0.50 to 0.66)	<u>0.76</u> (0.63 to 0.91)	<u>0.76</u> (0.64 to 0.90)	<u>0.60</u> (0.47 to 0.76)	<u>0.65</u> (0.53 to 0.79)	<u>0·72</u> (0·54 to 0·94)	<u>0.68</u> (0.53 to 0.86)	<u>0.61</u> (0.47 to 0.77)	<u>0.68</u> (0.54 to 0.84)	<u>0·46</u> (0·41 to 0·52)
<u>-0.32</u> (-0.47 to <u>-0.16)</u>	-0.09 (-0.21 to 0.03)	-0·03 (-0·10 to 0·04)	RIS	1·12 (0·88 to 1·40)	0·82 (0·49 to 1·29)	<u>0.66</u> (0.58 to 0.76)	0·87 (0·73 to 1·04)	0·88 (0·72 to 1·06)	<u>0.69</u> (0.53 to 0.88)	<u>0.75</u> (0.61 to 0.91)	0·83 (0·61 to 1·08)	0·78 (0·60 to 1·01)	<u>0.70</u> (0.53 to 0.89)	<u>0.78</u> (0.62 to 0.96)	<u>0.53</u> (0.46 to 0.60)
<u>-0.38</u> (-0.57 to <u>-0.20)</u>	<u>-0.16</u> (-0.32 to <u>-0.00)</u>	-0·09 (-0·21 to 0·02)	-0·07 (-0·19 to 0·06)	PAL	0·74 (0·43 to 1·20)	<u>0.60</u> (0.48 to 0.75)	0·79 (0·61 to 1·01)	0·79 (0·61 to 1·02)	<u>0.63</u> (0.46 to 0.85)	<u>0.68</u> (0.52 to 0.88)	0·75 (0·53 to 1·02)	<u>0.71</u> (0.52 to 0.95)	<u>0.63</u> (0.47 to 0.85)	<u>0.70</u> (0.53 to 0.93)	<u>0·48</u> (0·39 to 0·58)
<u>-0.39</u> (-0.60 to _0.19)	,	,	-0.08 (-0.26 to 0.11)	0·01 (-0·22 to 0·20)	ZOT	0·86 (0·51 to 1·32)	1·13 (0·66 to 1·78)	1·14 (0·67 to 1·81)	0·90 (0·51 to 1·46)	0·97 (0·56 to 1·55)	1.07 (0.61 to 1.71)	1·02 (0·58 to 1·65)	0·91 (0·51 to 1·47)	1·01 (0·58 to 1·61)	0·69 (0·41 to 1·07)
<u>-0.43</u> (-0.58 to <u>-0.28)</u>	$\frac{-0.21}{(-0.32 \text{ to})}$	<u>-0.14</u> (<u>-0.21 to</u> <u>-0.08)</u>	<u>-0.11</u> (<u>-0.18 to</u> <u>-0.05)</u>	-0·05 (-0·16 to 0·08)	-0·04 (-0·21 to 0·14)	HAL	<u>1·32</u> (1·11 to 1·57)	<u>1.33</u> (1.11 to 1.57)	1.05 (0.82 to 1.31)	1·13 (0·93 to 1·35)	1·25 (0·93 to 1·63)	1·19 (0·92 to 1·50)	1·06 (0·82 to 1·34)	1·17 (0·95 to 1·43)	<u>0.80</u> (0.71 to 0.90)
<u>-0.44</u> (-0.61 to <u>-0.28)</u>	$\frac{-0.22}{(-0.36 \text{ to})}$	<u>-0.15</u> (<u>-0.25 to</u> <u>-0.06)</u>	<u>-0.13</u> (-0.22 to -0.03)	-0·06 (-0·19 to 0·08)	-0·05 (-0·24 to 0·14)	-0.01 (-0.10 to 0.08)	QUE	1·01 (0·80 to 1·25)	0·80 (0·60 to 1·04)	0.86 (0.68 to 1.07)	0.95 (0.69 to 1.26)	0.90 (0.68 to 1.19)	0·81 (0·61 to 1·03)	0·89 (0·70 to 1·13)	<u>0.61</u> (0.52 to 0.71)
<u>-0.45</u> (-0.62 to <u>-0.28)</u>	$\frac{-0.23}{(-0.37 \text{ to})}$	<u>-0.16</u> (-0.25 to <u>-0.07)</u>	<u>-0.13</u> (-0.23 to <u>-0.03)</u>	-0·07 (-0·20 to 0·08)	-0·06 (-0·25 to 0·14)	-0·02 (-0·12 to 0·08)	-0·01 (-0·12 to 0·11)	ARI	0·80 (0·59 to 1·04)	0.86 (0.68 to 1.07)	0·95 (0·69 to 1·27)	0·90 (0·68 to 1·18)	0.80 (0.6 to 1.05)	0·89 (0·69 to 1·14)	<u>0.61</u> (0.51 to 0.72)
<u>-0.49</u> (-0.68 to <u>-0.30)</u>	$\frac{-0.27}{(-0.43 \text{ to})}$	<u>-0.20</u> (-0.33 to _0.06)	<u>-0.17</u> (-0.31 to -0.04)	-0·10 (-0·27 to 0·07)	-0·09 (-0·31 to 0·12)	-0·06 (-0·19 to 0·07)	-0·04 (-0·19 to 0·10)	-0·04 (-0·19 to 0·11)	SER	1·09 (0·81 to 1·45)	1·21 (0·84 to 1·69)	1·14 (0·81 to 1·56)	1.02 (0.73 to 1.39)	1·13 (0·83 to 1·52)	<u>0.78</u> (0.61 to 0.98)
<u>-0.49</u> (-0.66 to <u>-0.31)</u>	<u>-0.26</u> (-0.41 to -0.12)	<u>-0.20</u> (-0.29 to -0.10)	<u>-0.17</u> (-0.27 to <u>0.07)</u>	-0·10 (-0·24 to 0·04)	-0·09 (-0·29 to 0·11)	-0·05 (-0·15 to 0·04)	-0·04 (-0·16 to 0·08)	-0·04 (-0·16 to 0·09)	0·00 (-0·15 to 0·16)	ZIP	1·11 (0·80 to 1·50)	1.06 (0.78 to 1.41)	0·94 (0·70 to 1·24)	1.05 (0.81 to 1.33)	<u>0.72</u> (0.59 to 0.86)
<u>-0.50</u> (-0.67 to -0.33)	<u>-0.27</u> (-0.47 to -0.08)	<u>-0.21</u> (<u>-0.37 to</u> <u>-0.05)</u>	<u>-0.18</u> (<u>-0.34 to</u> <u>-0.02)</u>	-0·11 (-0·30 to 0·08)	-0·10 (-0·32 to 0·11)	-0·07 (-0·22 to 0·09)	-0·05 (-0·22 to 0·11)	-0·05 (-0·22 to 0·13)	-0·01 (-0·21 to 0·19)	-0·01 (-0·19 to 0·16)	CPZ	0·96 (0·66 to 1·34)	0·86 (0·61 to 1·19)	0·96 (0·68 to 1·32)	<u>0.65</u> (0.50 to 0.84)
<u>-0.50</u> (-0.69 to <u>-0.30)</u>	<u>-0.27</u> (-0.45 to _0.10)	<u>-0.21</u> (-0.34 to _0.08)	<u>-0.18</u> (<u>-0.32 to</u> <u>-0.04)</u>	· · · · · · · · · · · · · · · · · · ·	-0·10 (-0·32 to 0·11)	-0·07 (-0·20 to 0·07)	-0·05 (-0·20 to 0·09)	-0·05 (-0·20 to 0·10)	-0·01 (-0·19 to 0·17)	-0·01 (-0·17 to 0·14)	0.00 (-0.20 to 0.20)	ASE	0·91 (0·64 to 1·22)	1·01 (0·73 to 1·36)	<u>0.69</u> (0.54 to 0.86)
<u>-0.55</u> (-0.74 to <u>-0.36</u>)	$\frac{-0.33}{(-0.50 \text{ to}}$ $\frac{-0.16}{-0.16}$	<u>-0.26</u> (-0.39 to <u>-0.13)</u>	<u>-0.23</u> (-0.37 to -0.10)	<u>-0.17</u> (<u>-0.33 to</u> <u>-0.00)</u>	-0·16 (-0·37 to 0·06)	· - /	-0·11 (-0·25 to 0·03)	-0·10 (-0·25 to 0·05)	-0·06 (-0·24 to 0·11)	-0·07 (-0·22 to 0·09)	-0·05 (-0·25 to 0·14)	-0·05 (-0·23 to 0·12)	LUR	1·12 (0·83 to 1·50)	<u>0.77</u> (0.61 to 0.96)
<u>-0.55</u> (-0.73 to <u>-0.38</u>)	<u>-0.33</u> (-0.48 to _0.18)	<u>-0.26</u> (-0.38 to _0.15)	<u>-0.24</u> (-0.35 to -0.12)	<u>-0.17</u> (-0.32 to <u>-0.02)</u>	-0·16 (-0·36 to 0·04)	<u>-0.02)</u>	· · · · · ·	/	r - /	` ´	-0·06 (-0·24 to 0·13)	` ´	r í		<u>0.69</u> (0.56 to 0.84)
<u>-0.88</u> (<u>-1.03 to</u> <u>-0.73</u>)	<u>-0.66</u> (<u>-0.78 to</u> <u>-0.53</u>)	<u>-0.59</u> (<u>-0.65 to</u> <u>-0.53)</u>	<u>-0.56</u> (<u>-0.63 to</u> <u>-0.50)</u>	<u>-0.50</u> (<u>-0.60 to</u> <u>-0.39)</u>	<u>-0.49</u> <u>(-0.66 to</u> <u>-0.31)</u>	<u>-0.45</u> (<u>-0.51 to</u> <u>-0.39)</u>	<u>-0.44</u> (<u>-0.52 to</u> <u>-0.35)</u>	<u>-0.43</u> (-0.52 to <u>-0.34)</u>	<u>-0.39</u> (-0.52 to <u>-0.26)</u>	<u>-0.39</u> (-0.49 to -0.30)	<u>-0.38</u> (-0.54 to -0.23)	<u>-0.38</u> (-0.51 to -0.25)	<u>-0.33</u> (-0.45 to <u>-0.21)</u>	<u>-0.33</u> (-0.43 to _0.22)	РВО

Overall efficacy and ranking of antipsychotic drugs

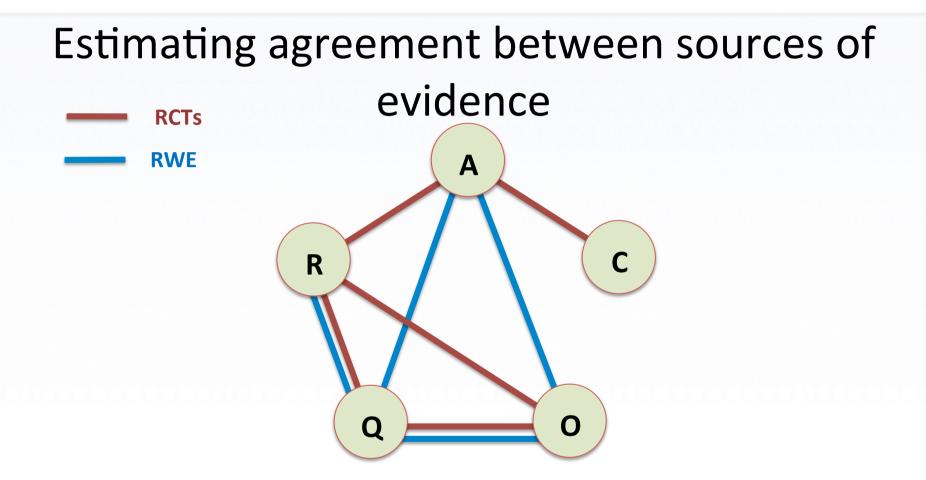

Overall change in symptoms

Clozapine -0.88 (-1.03 to -0.73) Amisulpride -0.66 (-0.78 to -0.53) Olanzapine -0.59 (-0.65 to -0.53) Risperidone -0.56 (-0.63 to -0.50) Paliperidone -0.50 (-0.60 to -0.39) Zotepine -0.49 (-0.66 to -0.31) Haloperidol -0.45 (-0.51 to -0.39) Quetiapine -0.44 (-0.52 to -0.35) Aripiprazole -0.43 (-0.52 to -0.34) Sertindole -0.39 (-0.52 to -0.26) Ziprasidone -0.39 (-0.49 to -0.30) Chlorpromazine -0.38 (-0.54 to -0.23) Asenapine -0.38 (-0.51 to -0.25 Lurasidone -0.33 (-0.45 to -0.21) Iloperidone -0.33 (-0.43 to -0.22) -0.5 -1 0 Favours active drug

SMD* (95% Crl) active versus placebo

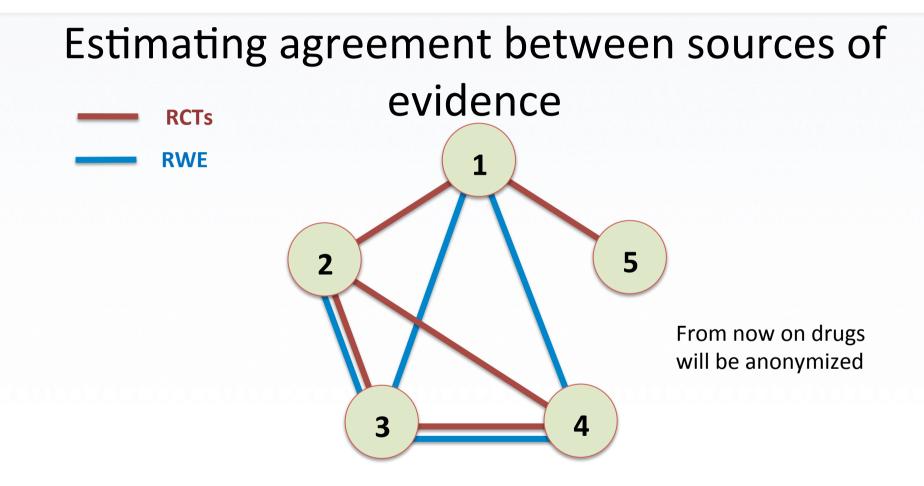
* SMD: Standardized Mean Difference

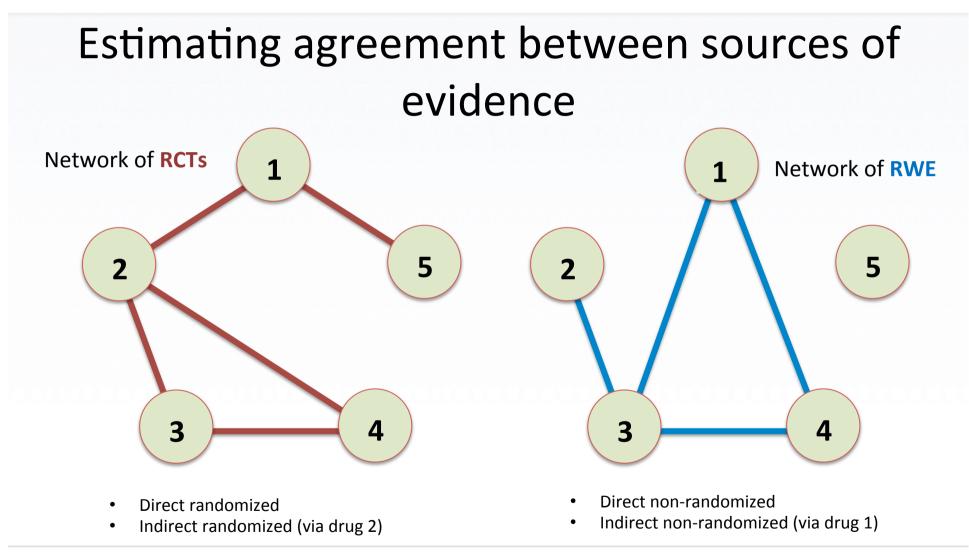
Network of 15 antipsychotic drugs in schizophrenia

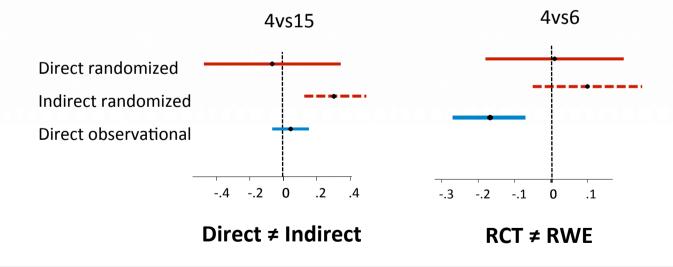


Estimating the agreement between different sources of evidence

- **Transitivity**: effect modifiers are evenly distributed accross the various comparisons
- The assumption of transitivity might be difficult to defend in the presence of both RWE and RCTs
- Studies have differences in *inclusion criteria, settings, methods etc*
- There might be discrepancies
 - Between direct and indirect evidence (statistical: inconsistency)
 - Between RWE and RCTs







Estimating agreement between sources of evidence

For each treatment comparison there may be up to 4 different types of evidence

- Direct randomized
- Indirect randomized
- Direct observational
- Indirect observational

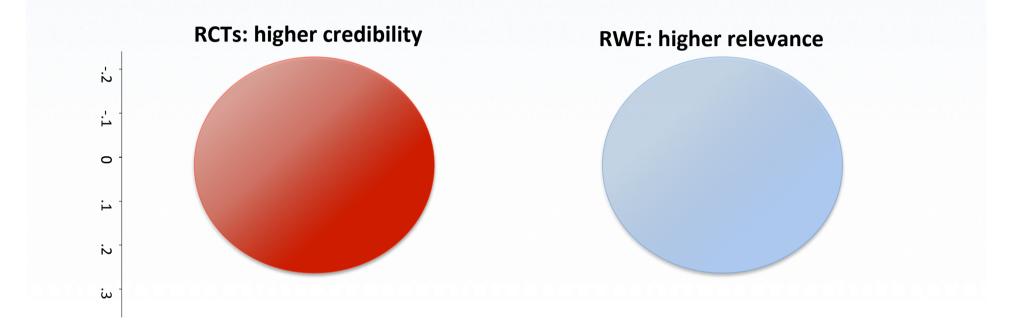
Choosing evidence versus an all-inclusive approach

• If differences are found, we try to explain them

Check the effect modifiers, differences in included populations and settings

- IPD network meta-regression for patient-level covariates

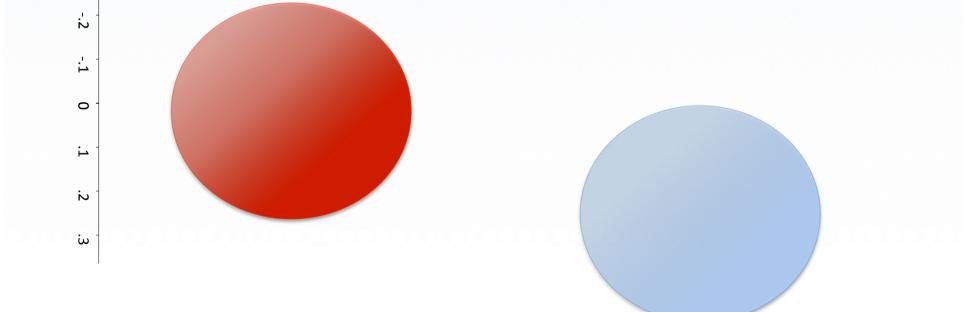
See GetReal in individual participant data (IPD) meta-analysis: a review of the methodology. Debray TP et al. Res Synth Methods. 2015


• Residual disagreement: should we discard RWE?

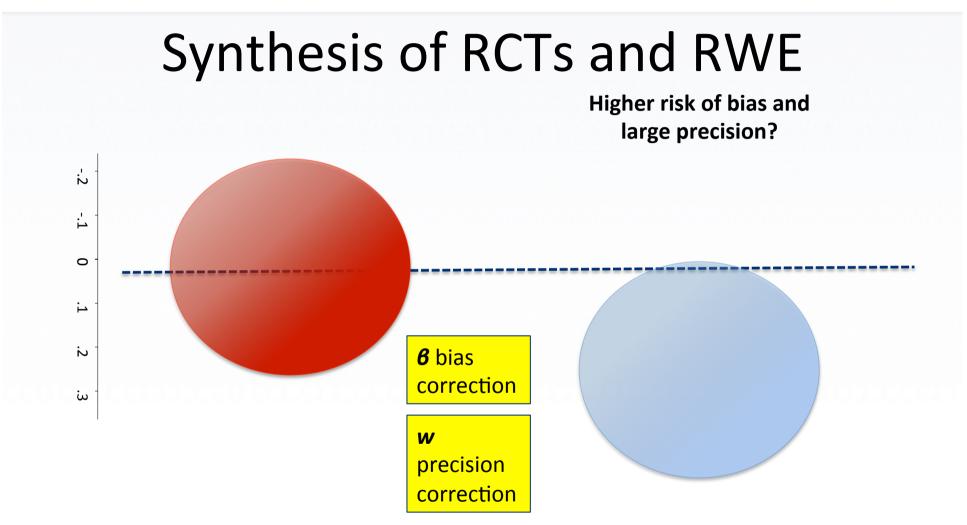
 Better to include it and explore the impact of various degrees of credibility attached to the RWE

Synthesis of RCTs and RWE

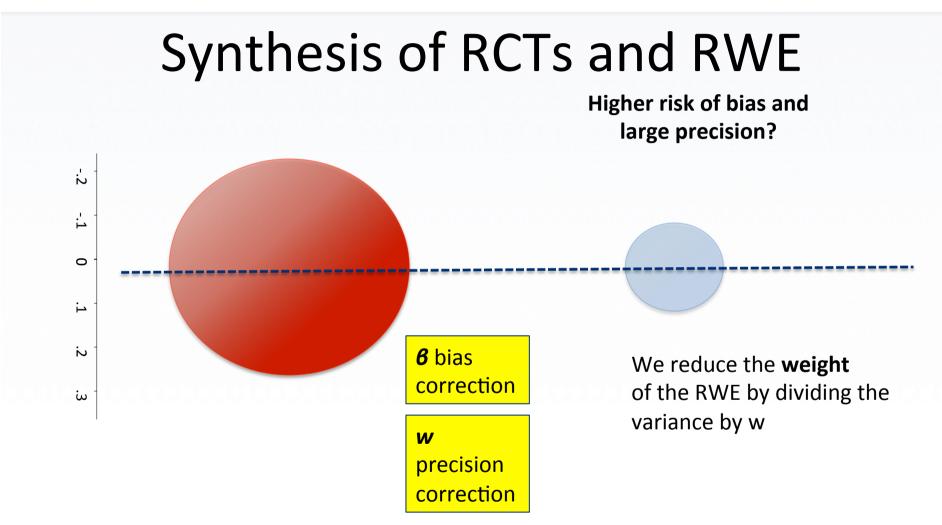
Synthesis of RCTs and RWE


Different assumptions about the credibility of RWE can be encompassed in

- **1. Design-adjusted analysis**
- 2. Informative priors from RWE
- 3. A three-level hierarchical model

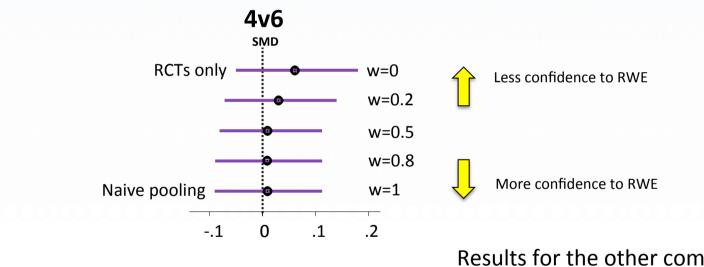


Synthesis of RCTs and RWE Higher risk of bias and large precision?



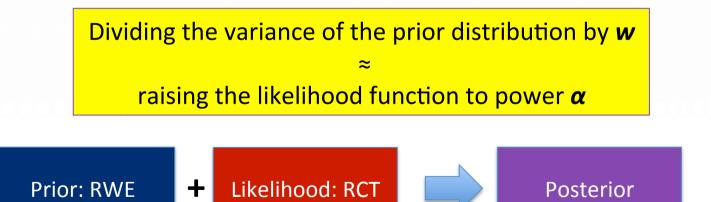
Design-adjusted analysis

- Adjust each study separately
 - For bias we add *B* to the summary effect
 - Decrease the weight it carries in the summary effect by w
 - w = 1 : RWE taken at face value
 - *w* **= 0** : ignore RWE
- Pinpointing exact values for *B* and *w* may be a difficult task
 - Needs expert opinion
 - Sensitivity analyses are necessary


By changing the value of *w* researchers can control the amount of confidence they want to place to the RWE

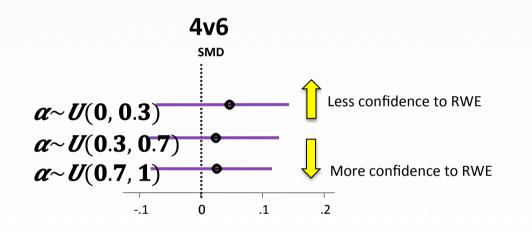
Design-adjusted analysis: Results

No bias adjustment ($\beta=0$), a single w parameter (only one non-randomized study)


Results for the other comparisons are even less sensitive to the amount of confidence placed in RWE

Using non-randomized evidence as prior information

- Observational studies can be viewed as «prior-knowledge» which when combined with the «observed data» gives a posterior summary effect
- Adjust for bias and downweight the prior distribution to address concerns of bias and over-precision



RWE as prior: Results

No bias adjustment ($\beta=0$), a single **a** parameter in the normal likelihood to be used as prior

Results for other comparisons are even less sensitive to the amount of confidence placed in RWE

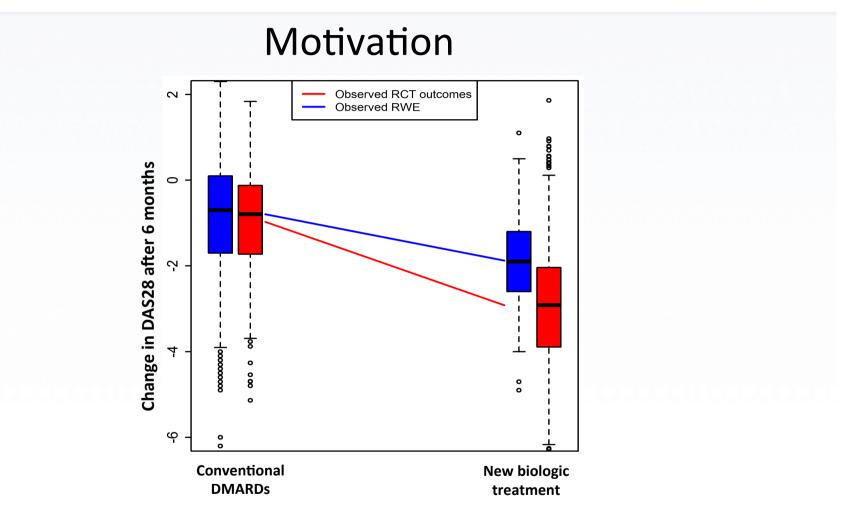
What is the risk of bias in the overall result?

- In the NMA results
 - there is still **some impact** from RWE
 - there are some RTCs of high risk of bias
 - evidence from studies flows directly and indirectly
- Crack the problem using the contribution matrix: It estimates how much information (%) is contributed by each study
 - In the naïve analysis (*w*=1) RWE accounted for **5.8%** of the information in the network
 - The sample size of the observational study is about 20% of the total sample size in the network
 - For the design-adjusted analysis with w= 0.5 RWE contributed **5** % of the information
- Consequently the risk of bias the NMA results is largely dictated by the risk of bias in the included RCTs

Evaluating the quality of evidence from a network meta-analysis. Salanti G PLoS One 2014 Graphical tools for network meta-analysis in STATA. Chaimani A et al PLoS One. 2013 Visualizing assumptions and results in network meta-analysis: The network graphs package Chaimani and Salanti. Stata Journal 2015.

Take home message

- If you are concerned about residual differences between RCTs and RWE, or if you think that RWE is less trustworthy than RCTs decrease the influence of the RWE in your estimates by dividing the variance by w
- It is **difficult to predict** the magnitude or direction of possible biases introduced by including RWE in an NMA
 - We thus advise to explore the effect of **placing different levels of confidence** in the observational evidence before they draw final conclusions in a sensitivity analysis
- We also recommend that the risk of bias in the results is evaluated after considering the relative contribution of each source of evidence in the pooled estimates
- Extend the NMA with mathematical modelling to make predictions in a real-world setting


Prediction of Real-World Treatment Effect based on RCT and RW Evidence: A case study on rheumatoid arthritis

Eva-Maria Didden

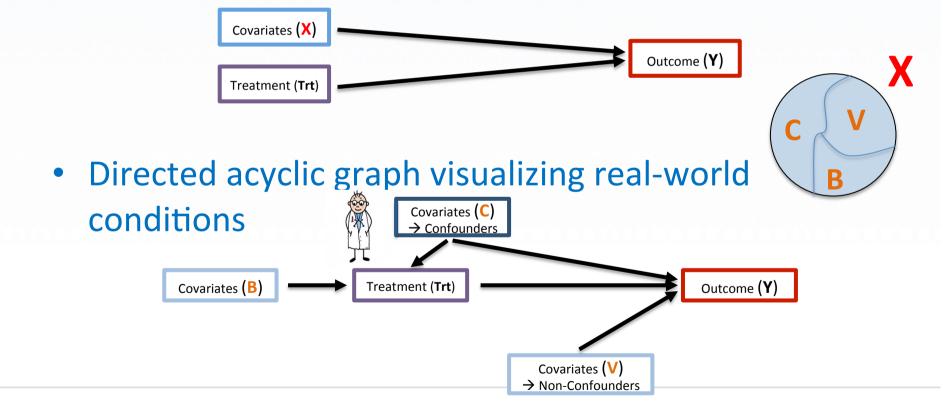
Institute of Social and Preventive Medicine (ISPM), University of Berne

Obvious gap in treatment oucome

Research Question

Set up a mathematical model that allows to predict the real-world effect of a new biologic treatment in patients with *Rheumatoid Arthritis* (RA) if...

- only RCT data on the new treatment and ...
- no observational data on the new treatment, but ...
- observational data on an existing similar treatment ...


are available?

Graphical Model Representation

• Directed acyclic graph visualizing RCT conditions

Formal Model Representation (side note)

• Linear model for RCT data:

 α : Intercept, β : Treatment effect γ : (non-confounding) Covariate effect

$$Y_{rct} \sim N(\alpha_{rct} + \beta_{rct}Trt + \gamma_{rct}X_{rct}, \sigma_{rct}^2 I)$$

 $Trt = \begin{cases} 1, & \text{biological agent} \\ 0, & \text{control treatment} \end{cases}$

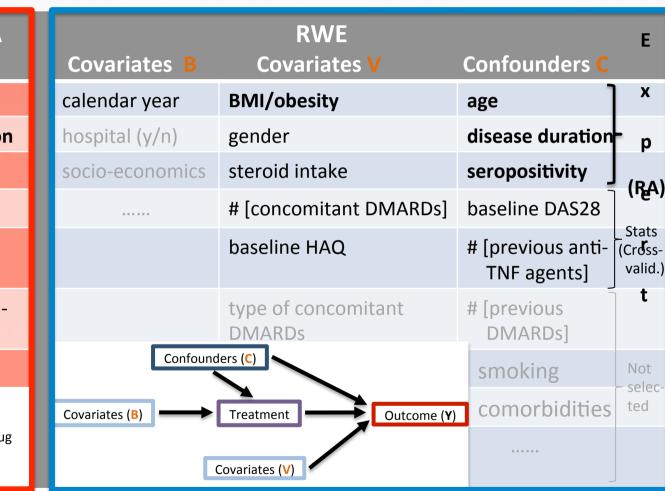
 Marginal structural model (MSM) for observational data:

→ inverse-probability-of-treatment weighting

$$Y_{obs} \sim N(\alpha_{obs} + \beta_{obs}Trt + \gamma_{obs}V_{obs}, \sigma^2 W^{-1}), \quad W \propto \frac{1}{f(Trt|C_{obs})'}$$

or $W \propto \frac{1}{f(Trt|C_{obs}, B_{obs})}$

J. M. Robins et al. (2000), "Marginal structural models and causal inference in epidemiology." Epidemiology, Volume 11 (5): pp. 550-560



Variable Classification and Selection

Outcome: Change in	RCT DATA Covariates
DAS28	age
HAQ	disease duration
EQ5D	BMI/obesity
ACR	seropositivity
CDAI	gender
RADAI	<pre># [previous anti- TNF agents]</pre>

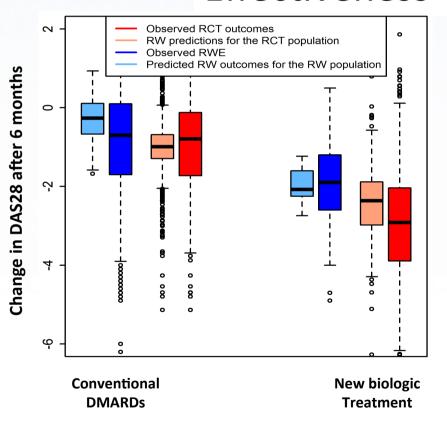
DAS28 – Disease activity score (28 joints)
HAQ – Health assessment questionnaire
DMARD – Disease modifying anti-rheumatic drug
TNF – Tumor necrosis factor
BMI – Body mass index

etpia

Modelling Concept

- 1. Develop a mathematical model, informed by ...
 - observational evidence on treatment decision
 - RCT(s) on the efficacy of the new treatment, and on all significant effect modifiers and prognostic factors
- 2. Predict real-world treatment effect for the RCT population(s)
 - Predict treatment decision based on RWE

- Predict treatment outcome, using evidence from the available RCT(s)
- 3. Predict treatment effect for a real-world patient population, using evidence from the available RCT(s)


Predicted Effectiveness vs. Observed Efficacy/ Effectiveness

Findings – RCT population:

- Predicted effectiveness is lower than observed efficacy
- Predicted effectiveness is higher than effectiveness observed in real-world

Findings – real-world population:

- Predicted and observed effects of the new biologic agent are similar
- Predicted and observed effects of the conventional DMARDs differ notably

⁺Real-Life Data in Drug Development

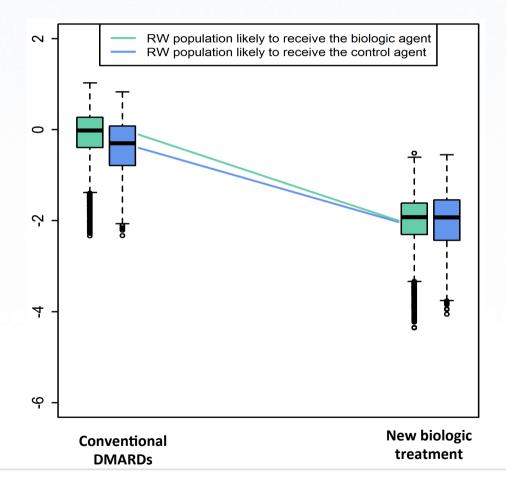
Additional Question

Predict real-world treatment outcome for any new RA patient population, assuming that

- all patients receive the biologic treatment
 - all patients take conventional DMARDs

What are the main conclusions?

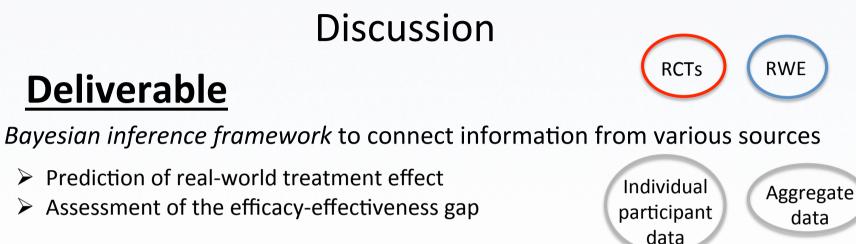
Predicted Effectiveness


Remark:

Patient classification into two groups

- → those who are more likely to receive the new biologic treatment
- → those who are more likely to receive conventional DMARDs

Findings:


- Predicted benefit from the new biol. treatment is similar in both groups
- Patients likely to receive the control agent are expected to benefit more from the control agent

data

- Main concerns: Predictive and external validity •
- Work in progress: ٠
 - Inclusion of results from network meta-analyses to predict relative drug effectiveness
 - Consideration of dynamic treatment regimes with time-varying confounders and censoring information
- etpia

Conclusions Chrissie Fletcher Amgen Ltd

Bridging efficacy to effectiveness

- Relative effectiveness can be estimated from RCTs
 - Key assumptions are required and should be evaluated
 - Follow good scientific principles to achieve a high quality analysis
- New evidence synthesis methods enable RWE to be integrated with RCT evidence to aid decision making at product launch
 - Consider the relative contribution of each source of evidence
 - Use sensitivity analyses assessing different levels of confidence
- (Relative) effectiveness can be predicted from RCT and RWE using mathematical models and allow the efficacy to effectiveness gap to be assessed
 - Regard RCT and observational data as complementary sources of evidence
 - Model validation is key to increase accuracy of predictions

ACKNOWLEDGEMENTS

- GetReal members, in particular:
 - Matthias Egger, Noemi Hummel, Eva-Maria Didden and Yann Ruffieux (University of Berne, Switzerland)
 - Georgia Salanti and Orestis Efthimiou (University of Ioannina, Greece)
 - Thomas Debray (University Medical Center Utrecht)
 - Gert van Valkenhoef (University Medical Center Groningen) and ADDIS team
 - Chrissie Fletcher (Amgen), Mark Belger (Lilly), Sandro Gsteiger and Aijing Shang (Roche)
- Other collaborators
 - Axel Finck (Hôpitaux Universitaires de Genève)
 - Stephan Reichenbach (Department of Rheumatology, Immunology and Allergology, Berne)

⁺Real-Life Data in **Drug Development**

Matthias Egger, Director of the Institute of Social and Preventive Medicine (ISPM), University of Berne, Switzerland

Christine Fletcher Executive Director Biostatistics, Amgen Ltd

Eva-Maria Didden, Postdoctoral research fellow at the ISPM, University of Berne, Switzerland

Georgia Salanti Associate Professor, University of Ioannina School of Medicine

